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Abstract The cloud-to-precipitation transition process in warm clouds simulated by state-of-the-art global
climate models (GCMs), including both traditional climate models and a high-resolution model, is evaluated
against A-Train satellite observations. The models and satellite observations are compared in the form of
the statistics obtained from combined analysis of multiple-satellite observables that probe signatures of the
cloud-to-precipitation transition process. One common problem identified among these models is the
too-frequent occurrence of warm precipitation. The precipitation is found to form when the cloud particle
size and the liquid water path (LWP) are both much smaller than those in observations. The too-efficient
formation of precipitation is found to be compensated for by errors of cloudmicrophysical properties, such as
underestimated cloud particle size and LWP, to an extent that varies among the models. However, this
does not completely cancel the precipitation formation bias. Robust errors are also found in the evolution of
cloud microphysical properties from nonprecipitating to drizzling and then to raining clouds in some GCMs,
implying unrealistic interaction between precipitation and cloud water. Nevertheless, auspicious information
is found for future improvement of warm precipitation representations: the adoption of more realistic
autoconversion scheme in the high-resolution model improves the triggering of precipitation, and the
introduction of a sophisticated subgrid variability scheme in a traditional model improves the simulated
precipitation frequency over subtropical eastern ocean. However, deterioration in other warm precipitation
characteristics is also found accompanying these improvements, implying the multisource nature of warm
precipitation biases in GCMs.

1. Introduction

Precipitation is of great hydrological and radiative importance in the climate system by its depletion of cloud
water and its modification to cloud optical properties (Intergovernmental Panel on Climate Change, 2013;
Pincus & Baker, 1994). Precipitation also responds strongly to atmospheric conditions such as aerosol pertur-
bations and global warming (Held & Soden, 2006; Hulme et al., 1998; Lebo & Feingold, 2014; L’Ecuyer et al.,
2009; Mann et al., 2014; Sorooshian et al., 2009). The proper representation of precipitation process in global
climate models (GCMs) therefore is crucial not only for realistic simulations of present climate but also, and
more importantly, for reliable projections of future climate change due to human activities (Golaz et al.,
2011; Golaz et al., 2013; Stephens, 2005).

Microphysical processes of precipitation are composed of two major processes, that is, the collision-
coalescence among smaller cloud particles to form larger particles and a continuous broadening of particle
size spectrum due to the condensational growth. However, given the coarse spatial resolution adopted in
GCMs, these processes occurring at a cloud scale need to be represented in GCMs by “bulk parameteriza-
tions” in a highly approximated manner. These parameterizations represent the onset of precipitation by
the so-called “autoconversion” process that accounts for the rain formation through collision and coales-
cence of cloud particles; the precipitation water thus formed further depletes cloud water through the
“accretion” process. Although this type of parameterization is widely used in GCMs and efforts have been
devoted to the sophistication of these parameterizations for decades (Berry, 1968; Kessler, 1969;
Khairoutdinov & Kogan, 2000; Liu et al., 2007; Tripoli & Cotton, 1980), it is still subject to large uncertainties
(Penner et al., 2006; Quaas et al., 2009).
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Such uncertainty of parameterizations causes key discrepancies in precipitation behaviors of GCMs from the
real atmosphere. One issue that has been pointed out is a common overestimate of the frequency of light
rain compared with that inferred from satellite observations (Michibata et al., 2016; Stephens et al., 2010;
Suzuki et al., 2015). Stephens et al. (2010) demonstrated that precipitation in weather prediction models
and climate models, as well as high-resolution cloud-resolving models, occurred too often and was too light
compared to those in satellite observations. With the aid of a simplified warm rain model as well as satellite
observations and GCMs, such precipitation bias was also shown to reflect, at least in part, fundamental
behaviors of autoconversion schemes adopted in GCMs (Suzuki et al., 2015). Michibata et al. (2016) further
proposed that the overestimate of light rain can be a cause of unrealistically strong dependence of liquid
water path (LWP) on perturbed aerosols, which is a critical pathway through which anthropogenic aerosol
emissions influence the future climate change. Despite this progress in understanding model precipitation
behaviors in light of satellite observations, the source of the precipitation biases is still somewhat obscure
and thus requires more thorough investigations.

To identify the source of warm precipitation biases and fundamentally improve the model representation
of precipitation, there is a growing interest in the GCM community to study precipitation and relevant
processes with a particular emphasis on their process-level characteristics (Baker & Peter, 2008; Geoffroy
et al., 2008; Takahashi et al., 2017; Zhao et al., 2016). This emerging trend of research is also facilitated
by recent progress of satellite observations, particularly given the emergence of the A-Train constellation
that simultaneously observes clouds and precipitation with multiple platforms and sensors (L’Ecuyer &
Jiang, 2010; Stephens et al., 2008). This has provided an unprecedented opportunity to investigate
process-level characteristics of cloud microphysics on the global scale. Particularly notable is the fact that
key cloud properties, such as radar reflectivity, cloud particle size, and cloud top temperature, are
detected or retrieved simultaneously along the A-Train orbits. These coobserved properties were then
combined and exploited to observationally diagnose key aspects of the fundamental processes in
cloud-to-precipitation transition (e.g., Suzuki et al., 2010; Wang et al., 2012). For instance, Suzuki et al.
(2010) and Nakajima et al. (2010) proposed a method that combines the multiple-satellite observables
in a particular manner to construct the statistics, named Contoured Frequency by Optical Depth
Diagram (CFODD), which “fingerprint” the transition of vertical microphysical structure classified according
to cloud particle sizes. The unique information of the precipitation process thus obtained from satellite
observations has enabled us to evaluate and improve model parameterizations at a novel, fundamental
level. Theoretical studies by Suzuki et al. (2013) and Suzuki et al. (2015) compared the satellite-observed
and GCM-simulated characteristics of the CFODD statistics to expose a key discrepancy between them
and interpreted it in the context of fundamental behaviors of autoconversion process representations
in GCMs.

This study builds upon the previous studies (Suzuki et al., 2013, 2015) that developed the A-Train-based
metrics for warm rain process and extends them to evaluations of up-to-date versions of multiple state-
of-the-art climate models. Compared to these previous studies, this study focuses more on the evolution
of cloud microphysical properties associated with precipitation process. The models are evaluated in
their representations of the cloud-to-precipitation transition process of warm clouds (i.e., clouds with
cloud top temperature>0°C) that are represented with varying cloud microphysics parameterizations.
One particular objective of this study is to identify the source of biases in the warm precipitation process
in GCMs in the context of the occurrence frequency of precipitation and the microphysical transition
from cloud to rain. Another goal of this study is to explore the effects of key cloud microphysical para-
meterizations (such as autoconversion schemes and subgrid variabilities), which vary from model to
model, on behaviors of the simulated warm rain. Given that the models examined include both tradi-
tional coarse-resolution and high-resolution GCMs, the multimodel comparisons provide a useful insight
into possible effect of different spatial resolutions on the warm rain process representations. In the con-
text of the scale dependency of the warm rain characteristics, we analyzed results from a traditional
GCM framework with different precipitation schemes and representations of subgrid cloud water variabil-
ities, which influence the onset and microphysical process rates of the warm rain formation (Lebsock
et al., 2013; Morrison & Gettelman, 2008). Effects of the choice of cloud microphysical schemes are also
investigated within the framework of the high-resolution model through sensitivity experiments with
different autoconversion schemes.
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This paper is organized as follows. Section 2 describes observational and model data used in this study. In
section 3, we present the model biases identified in warm precipitation frequency and their relationship to
cloud microphysical properties. Further examinations of the warm precipitation process are provided in
section 4, where sources of the precipitation biases are investigated in terms of two aspects comprising
the biases, that is, the errors in cloud microphysical properties and those in precipitation parameterizations.
At last, the main findings of this study are summarized in section 5.

2. Data
2.1. A-Train Observations

The observation data used are satellite products of CloudSat and the Moderate Resolution Imaging
Spectroradiometer (MODIS), both members of the A-Train constellation.

CloudSat carries a 94 GHz nadir-pointing radar that is capable of detecting the vertical profile of clouds and
precipitation. The radar reflectivity of the 2B-GEOPROF product (Marchand et al., 2008) is used in this study.
The radar reflectivity is sensitive to particle sizes within the radar beam and thus can be used to distinguish
between cloud droplets and precipitation drops and to detect drizzle or light rain (Berg et al., 2010). In this
study, we categorize radar profiles into three precipitation categories according to the profile maximum
reflectivity (denoted as Zmax): nonprecipitating “cloud” with �30 < Zmax < �15 dBZ, “drizzle” with
�15 < Zmax < 0 dBZ, and “rain” with Zmax > 0 dBZ (e.g., Haynes et al., 2009; Suzuki et al., 2015).

The Aqua MODIS collection 6 level 2 products (MYD06_L2) of effective cloud top particle radius (Reff), cloud
top temperature (Tc), and optical thickness (τc) (Platnick et al., 2015) are also employed. The Reff and τc are
retrieved at a spatial resolution of 1 km, and Tc is retrieved at a resolution of 5 km. The MODIS data are
collocated to the CloudSat footprint to enable coanalysis of these two satellites. The January observations
from 2007 to 2010 for both CloudSat and MODIS are used in our analysis.

A subset of observational data set is constructed by averaging cloudy pixels in the original A-Train data over
every ~14 km along track, in order to facilitate the comparison between the fine-resolution observation and
relatively coarse resolution of Nonhydrostatic ICosahedral Atmospheric Model (NICAM) (with grid size of
~14 km). This new data set is denoted as A-Train(14 km) in the following sections. Unless stated otherwise,
the NICAM results should be evaluated by comparisons to A-Train(14 km). For traditional GCMs, since cloud
simulators that generate subgrid cloud structures comparable with the original satellite detections are incor-
porated (see section 2.2), the results from the original A-Train data set are used as reference.

2.2. Model Simulations

The GCMs analyzed here are (1) the Geophysical Fluid Dynamics Laboratory Atmospheric Model version 3
(GFDL AM3) model incorporating a unified turbulence and cloud parameterization called the Cloud Layers
Unified by Binormals (CLUBB) parameterization (denoted as GFDL_CLUBB) (Guo et al., 2014, 2015); (2) the
new-generation GFDL Atmospheric Model version 4 (AM4) (denoted as GFDL_AM4) (Zhao et al., 2016, perso-
nal communication); (3) the global aerosol-climate model developed by the Max Planck Institute for
Meteorology and the HAMMOZ consortium, version ECHAM6.1-HAM2.2-MOZ0.9 (denoted as ECHAM-
HAMMOZ) (Lohmann et al., 2007; Zhang et al., 2012); (4) the Model for Interdisciplinary Research on
Climate, version 5.2 (denoted as MIROC5.2) (Watanabe et al., 2010); (5) the Japan Meteorological
Agency/Meteorological Research Institute Coupled Atmosphere-Ocean General Circulation Model version
3 (denoted as MRI-CGCM3) (Yukimoto et al., 2011, 2012) under improvement toward the Coupled Model
Intercomparison Project Phase 6; (6) the global high-resolution model Nonhydrostatic ICosahedral
Atmospheric Model (NICAM) (Satoh et al., 2008, 2014) with the autoconversion scheme of Berry (1968)
(hereinafter BR68) (denoted as NICAM_Br); and (7) the NICAM model with the autoconversion scheme
of Khairoutdinov and Kogan (2000) (hereinafter KK00) (denoted as NICAM_KK). The first five models are
traditional coarse-resolution GCMs, while the last two (the two versions of NICAM) are global high-
resolution models with horizontal resolutions of about 14 km. A summary of the model configurations
is provided in Table 1.

Since the aim of this study is process-level investigation of model biases, the analysis here is based on
1 month (January) outputs, following a spin-up of 3 months or several years, from each of these models, with
an output frequency of every 6 h. It was testified (not shown here) that it has little effect on the process-level
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diagnostics that only 1 month outputs are used and whether prescribed sea surface temperature or a
coupled ocean model is used. The model output is not sampled to match the A-Train observation times.
The test using model output at one specific time of the day suggests that time sampling does not change
the main findings of this study.

For comparisons with A-Train satellite observations, radar simulators are incorporated in all these models
to transform model cloud profiles into radar reflectivity. The Cloud Feedback Model Intercomparison
Project Observation Simulation Package (Bodas-Salcedo et al., 2011) is applied to the traditional GCMs,
with the maximum-random overlap assumption for clouds at different vertical layers (Webb et al., 2001)
and subgrid precipitation distribution algorithm of Zhang et al. (2010). The Joint Simulator for Satellite
Sensors (J-simulator) (Hashino et al., 2013; Roh & Satoh, 2014; Satoh et al., 2016) that features fast
computation with large size of model input is applied to NICAM for forward simulations of the satellite
observables. For the traditional GCMs, our analyses are conducted for the subcolumn representations of
grid-resolving, large-scale clouds (excluding convective clouds represented by cumulus parameterizations)
as large-scale clouds are generated from typical bulk parameterizations of autoconversion and accretion.
Whereas, as there is no partition between large-scale and convective clouds in NICAM, and it is virtually
impossible to separate the two types of clouds from satellite observations, we use data of all warm clouds
for NICAM and A-Train. We also restrict the analysis to oceanic areas, which will minimize the effects from
different representations of aerosol-precipitation interactions among GCMs, as well as the uncertainties in
satellite retrievals due to surface albedo and topographical uncertainties.

GFDL_CLUBB and GFDL_AM4 share the same model framework but differ in both precipitation schemes
and representation of subgrid variability of condensate (Table 1). GFDL_CLUBB takes into account the
subgrid variability of condensates as an important factor that enhances the autoconversion and
accretion rates through a probability density function (PDF)-based method with unified treatment of
subgrid dynamics. In GFDL_AM4, however, subgrid cloud variabilities are not considered in the autocon-
version and accretion parameterizations. The comparisons of the two versions of the GFDL models thus
demonstrate the joint effect of precipitation schemes and subgrid representations of clouds on the forma-
tion of precipitation.

The two versions of NICAM have identical model structures but different autoconversion schemes. The
KK00 and BR68 schemes, each implemented to NICAM, are characterized by significantly different preci-
pitation time scales and therefore produce different vertical microphysical structures, as shown in
previous studies (Michibata & Takemura, 2015; Suzuki et al., 2015). With the comparison between the
two versions of NICAM, we intend to investigate how the choice of such different autoconversion
schemes can lead to the cloud-to-precipitation transition processes and cloud microphysical properties
in a common global model.

A variety of autoconversion schemes are adopted in the other GCMs analyzed. MIROC5.2 applies the BR68
scheme, the same as NICAM_Br; ECHAM-HAMMOZ applies the KK00 scheme (Zhang et al., 2012), the same
as NICAM_KK and GFDL_CLUBB. MRI-CGCM3 and GFDL_AM4 both adopt the Tripoli and Cotton (1980) auto-
conversion scheme but use different particle size thresholds to trigger precipitation (7 μm for MRI-CGCM3
and 8.5 μm for GFDL_AM4). Intercomparisons among different models sharing the same autoconversion
scheme hint at how the same autoconversion scheme behaves in different models in representation of the
precipitation formation.

Table 1
Summary of Model Configurations

Horizontal resolution Number of subcolumns Cloud schemes Autoconversion schemes Subgrid representation

GFDL_CLUBB ~1.0° × 1.0° 25 two moments Khairoutdinov and Kogan (2000) CLUBB, unified treatment
GFDL_AM4 ~1.0° × 1.0° 25 two moments Tripoli and Cotton (1980) —
ECHAM-HAMMOZ 1.875° × 1.875° 100 two moments Khairoutdinov and Kogan (2000) —
MRI-CGCM3 1.125° × 1.125° 120 two moments Tripoli and Cotton (1980) —
MIROC5.2 1.4° × 1.4° 25 two moments Berry (1968) —
NICAM_Br ~14 km — two moments Berry (1968) —
NICAM_KK ~14 km — two moments Khairoutdinov and Kogan (2000) —
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Figure 1. Distributions of in-cloud frequencies of cloud (�30 < Zmax < �15 dBZ, left), drizzle (�15 < Zmax < 0 dBZ, middle), and rain (Zmax > 0 dBZ, right), for
(a) A-Train, (b) A-Train averaged every 14 km along track, (c) GFDL_CLUBB, (d) GFDL_AM4, (e) ECHAM-HAMMOZ, (f) MRI-CGCM3, (g) MIROC5.2, (h) NICAM_Br,
and (i) NICAM_KK.
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3. Precipitation Frequency Analysis

In this section, we evaluate the in-cloud frequency of cloud, drizzle, and rain, as defined based on
radar reflectivity (section 2.1) and explore the connection between precipitation formation and cloud
microphysical properties.

3.1. In-Cloud Precipitation Frequency

It has been reported that precipitation is generally too frequently generated in GCMs (Stephens et al., 2010;
Suzuki et al., 2015). However, it has rarely been explicitly illustrated how frequent warm precipitation is gen-
erated from the in-cloud perspective. Here the occurrence frequencies of cloud, drizzle, and rain are defined
from the in-cloud perspective as follows:

f cloud ¼ Ncloud=Ntot (1)

f drizzle ¼ Ndrizzle=Ntot (2)

f rain ¼ Nrain=Ntot (3)

where Ncloud, Ndrizzle, and Nrain are the number of cloud, drizzle, and rain subcolumns (or pixels for A-Train)
within each gridbox and Ntot is the total number of cloudy subcolumns (Ntot =Ncloud +Ndrizzle +Nrain). The
use of these in-cloud frequencies enables us to quantify how likely it is to drizzle or rain when clouds exist,
and thus, it is straightforward to relate precipitation with cloud microphysics. These quantities are computed
on 1.25°× 1.25° (latitude × longitude) grids from the A-Train orbit data and the NICAM data, whereas the
original grid sizes are used for the traditional climate models (see Table 1).

Figure 1 shows the global geographical distributions of fcloud, fdrizzle, and frain obtained from A-Train obser-
vations and various models between 60°S and 60°N. The globally averaged values are shown in Figure 2. The
A-Train results (both the original and the 14 km averaged) (Figures 1a and 1b) suggest that for most regions,
especially subtropical eastern oceans and midlatitude oceans, the majority of warm clouds are nonprecipi-
tating; drizzling clouds constitute about 30–40% of all clouds in most regions, while raining clouds show
notable occurrences only over the intertropical convergence zone. These characteristics of the in-cloud
occurrence frequencies corroborate the fact that cloud-to-precipitation transition is both microphysically
and dynamically controlled (Sorooshian et al., 2013). In terms of the global mean (Figure 2), it is fair to
say that the majority of clouds (about 60%) are not precipitating and that most precipitating clouds are
just drizzling.

However, all models show characteristics that are significantly different from the A-Train observations. The
occurrences of nonprecipitating clouds are strikingly small, and those of drizzle and rain are substantially
overpredicted in the models. The two versions of GFDL models (Figures 1c and 1d), ECHAM-HAMMOZ
(Figure 1e), and NICAM_KK (Figure 1i) are slightly better than other models: nonprecipitating clouds occur
relatively more frequently than in other models. It should be noted that the radar simulators used to generate
subgrid radar reflectivity do not “see” the area fraction of precipitating clouds, and thus, when precipitation
occurs in a grid box, all cloudy subcolumns contain precipitation. To take this “precipitation fraction” effect
into account, we also calculated the observational cloud/precipitation frequencies from a grid-scale view: If
any pixel in a 1.25° latitude segment is found to be raining, assume that all of the warm clouds in that seg-
ment are raining; otherwise, if any pixel in this segment is drizzling, assume all warm clouds are drizzling
in that segment. The results (shown in Figure 2 as A-Train(gs)) suggest that the precipitation fraction effect
does contribute partly to the overestimated precipitation frequency in Figures 1 and 2. However, the
simulated precipitation frequencies are still remarkably larger than A-Train(gs). Therefore, the precipitation
fraction effect cannot dismiss the fact that precipitation is generated too easily by GCMs. The too-easy gen-
eration of precipitation will also be demonstrated in the following sections.

A unique advantage of CLUBB is its representation of the subgrid variabilities of subtropical eastern oceanic
stratus clouds (Guo et al., 2010, 2014, 2015). This is corroborated by the maximum fcloud (Figure 1c, left) over
these regions by GFDL_CLUBB. However, there is an obvious lack of midlatitude oceanic nonprecipitating
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clouds in GFDL_CLUBB, which are better represented by GFDL_AM4
(Figure 1d, left). These interesting differences imply that the
dependencies of precipitation on subgrid variabilities of clouds and
turbulences differ between subtropical eastern and midlatitude oceans.

On the other hand, the alteration of autoconversion schemes in NICAM
also remarkably affects simulated fcloud, fdrizzle, and frain as shown in
Figures 1h and 1i. The increase of midlatitude and subtropical eastern
oceanic clouds and the corresponding decrease of drizzle and rain in
NICAM_KK are favorable. These features of NICAM_KK are quite similar
to those of ECHAM_HAM (Figure 1e), which also uses the KK00 scheme
to form warm precipitation.

As the definition of cloud, drizzle, and rain are based on radar reflectivity
(Zmax), we compare the simulated and observed PDFs of subcolumn
Zmax in Figure 3. The systematic overestimation of Zmax is found for all
models. The A-Train Zmax peaks at around �25 dBZ (in the nonprecipi-
tating cloud category), while those of models commonly peak at around
0 dBZ (in the drizzle or rain category). Even considering the uncertainty
of radar reflectivity calculated by radar simulator to be up to 4–5 dBZ
(Di Michele et al., 2012), the overestimation of radar reflectivity by
GCMs is still robust.

3.2. Precipitation Occurrence Against Cloud Microphysics

The too-frequent occurrence of precipitation underlines that the water transition processes (i.e., the transition
from cloud water to precipitation water) may not be correctly represented in GCMs. To evaluate the modeled
water transition processes against observations, we computed fractional occurrences of different precipita-
tion categories as a function of LWP (Kawamoto & Suzuki, 2012; Lebsock et al., 2008; L’Ecuyer et al., 2009;
Suzuki et al., 2015), for both models and satellite observations. The observational LWP is calculated from
MODIS Reff and τc following Suzuki et al. (2015) as

LWP ¼ 2
3
ρwReffτc; (4)

where ρw is the liquid water density.

The results are shown in Figure 4. The A-Train results (Figures 4a and 4b)
demonstrate that (1) the cloud-to-precipitation transition occurs more
readily with increasing LWP, with the percentage of nonprecipitating
clouds (rain) having its maximum (minimum) at the smallest LWP and
decreasing (increasing) with increasing LWP, and (2) drizzle (which fea-
tures smaller precipitating drop sizes) is responsible for most of the
water transition over LWP below about 200 g m�2, while rain (which fea-
tures larger precipitating drop sizes) becomes dominant with further
increase in LWP.

These observed characteristics are not properly captured by the GCMs
as shown in Figures 4b–4h. The too small occurrence of nonprecipitat-
ing clouds and too large occurrence of precipitation at small LWP, com-
pared to satellite observations, are found for all the models. This means
that precipitation is triggered to form too easily in cloud development
characterized by smaller LWP values. This, at least in part, explains why
simulated precipitation is overly frequent, as shown in Figure 1. For
GFDL_AM4 (Figure 4d) and ECHAM-HAMMOZ (Figure 4e), the magni-
tude and trend of the rain fraction (blue lines) with regard to LWP are
more reasonably represented than those of other models. This implies
that the drizzle to rain transition (represented primarily by accretion)

Figure 2. Relative frequency of cloud (fcloud), drizzle (fdrizzle), and rain (frain)
averaged between 60°S and 60°N for A-Train observations and model simu-
lations. The observational results are calculated upon the original A-Train
data set (A-Train), upon the subset A-Train data set averaged every 14 km
along track (A-Train(14 km)), and from the grid-size (1.25° latitude along
track) view by considering the precipitation fraction effect (A-Train(gs)).

Figure 3. Probability density functions of subcolumn maximum radar
reflectivity (Zmax) for A-Train observations and model simulations. A-Train
represents the original satellite data, and A-Train(14 km) represents the
subset data averaged every 14 km along track.
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Figure 4. Fractional occurrence frequency of cloud (red), drizzle (green), and rain (blue) as a function of liquid water path
for (a) A-Train, (b) A-Train averaged every 14 km along track, (c) GFDL_CLUBB, (d) GFDL_AM4, (e) ECHAM-HAMMOZ, (f) MRI-
CGCM3, (g) MIROC5.2, (h) NICAM_Br, and (i) NICAM_KK.
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appears to be reasonably represented and therefore that the transition
from cloud to drizzle water (represented by autoconversion) is likely to
be the primary cause for the overestimation of precipitation occurrence
in these models. On the other hand, other models show a signature of
too easily transition from drizzle to rainwater as well as from cloud to
drizzle water, particularly for GFDL_CLUBB (Figure 4c) and NICAM_Br
(Figure 4h), which show significantly large rain occurrences at the
smallest LWP.

In addition to the water transition process investigated above, the verti-
cal microphysical structure and its variation with respect to cloud top
particle size provide us with a unique perspective to diagnose process-
level biases in model representation of warm rain formation. The
CFODD method of Suzuki et al. (2010, 2015) is employed to investigate
this issue. In CFODD, vertical profiles of radar reflectivity are statistically
represented on the in-cloud optical depth (ICOD) axis (rather than the
traditional geometrical height axis), where occurrence frequencies of
the radar reflectivity computed on each ICOD bin are displayed in the
form of the contoured frequency diagram (Nakajima et al., 2010;
Suzuki et al., 2010). For observations, vertical profile of ICOD is deter-
mined from the total MODIS τc with an adiabatic growth assumption
algorithm (Suzuki et al., 2010). For models, ICOD is obtained from the
model output of cloud optical depth profiles, and the radar reflectivity
is obtained from the radar simulators.

Figure 5 shows the CFODDs obtained from A-Train observations and
model simulations, classified according to Reff into 5< Reff ≤ 10 μm,
10< Reff ≤ 15 μm, and 15< Reff ≤ 20 μm. In A-Train (Figures 5a and 5b),
the vertical structure shows a monotonic shift from nonprecipitating
profiles to precipitating profiles with increasing Reff: for 5< Reff
≤ 10 μm, radar reflectivities throughout the cloud layer are mostly smal-
ler than �15 dBZ; with the increase of Reff, radar reflectivity at lower
parts of clouds increases to a maximum of around 0 dBZ for
10< Reff ≤ 15 μm, indicating the occurrence of drizzle, and to around
8 dBZ for 15< Reff ≤ 20 μm, indicating the occurrence of rain. The shift
of radar reflectivity structure with Reff suggests either that the develop-
ment of precipitation is accompanied by the growth of cloud top parti-
cle sizes or that precipitation is likely to form when cloud particle sizes
exceed a critical value in a statistical sense.

However, all models exhibit a radar reflectivity over �15 dBZ even for
5< Reff ≤ 10 μm as found in Figures 5c–5i, and the simulated radar
reflectivity at small ICOD readily exceeds �15 dBZ for most models
except ECHAM-HAMMOZ (Figure 5e). This suggests that precipitation
is triggered too easily in models even when clouds are at incipient
development stages in terms of both particle size and optical depth.
This is consistent with the fact that precipitation readily occurs even
when LWP is small as discussed above.

The difference between GFDL_CLUBB and GFDL_AM4, primarily in the
subgrid variability of cloud water and turbulence (Guo et al., 2014),
appears as the difference in the enhancement factor on autoconversion
rate. This is depicted by the fact that the CFODDs of GFDL_CLUBB
(Figure 5c) show notably different characteristics from those of
GFDL_AM4 (Figure 5d): the radar reflectivity of GFDL_CLUBB is larger
at small ICOD, and there is an attenuation of radar reflectivity (implied

Figure 5. The probability function of radar reflectivity as a function of in-
cloud optical depth (i.e., CFODDs) for (a) A-Train, (b) A-Train averaged every
14 km along track, (c) GFDL_CLUBB, (d) GFDL_AM4, (e) ECHAM-HAMMOZ,
(f) MRI-CGCM3, (g) MIROC5.2, (h) NICAM_Br, and (i) NICAM_KK. The numbers
of bins for optical depth and reflectivity are 15 and 25, respectively. The radar
reflectivity is normalized in each bin of in-cloud optical depth.
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Figure 6. Two-dimensional probability density functions of cloud occurrence as a function of LWP and Reff for (a) A-Train,
(b) A-Train averaged every 14 km along track, (c) GFDL_CLUBB, (d) GFDL_AM4, (e) ECHAM-HAMMOZ, (f) MRI-CGCM3,
(g) MIROC5.2, (h) NICAM_Br, and (i) NICAM_KK.
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from the decrease of radar reflectivity with increasing ICOD) in the rightmost two Reff ranges. This
demonstrates that precipitation is more efficient in GFDL_CLUBB than in GFDL_AM4.

It is worth noting that the two versions of NICAM with different autoconversion schemes show significantly
different CFODD characteristics. NICAM_Br (Figure 5h) shows great attenuation effect of radar reflectivity,
implying that precipitation is substantially too efficient at upper parts of clouds. On the other hand,
NICAM_KK (Figure 5i) shows auspicious improvements: radar reflectivity is more likely to be smaller than
�15 dBZ when Reff is small, at least at ICOD <30, and the attenuation effect is significantly reduced. These
results propose that drizzle is more likely to be triggered later and the transition from cloud water to preci-
pitation water is less efficient in NICAM_KK than in NICAM_Br. These characteristics of NICAM_KK are closer
to those found in the A-Train observations and therefore deemed more realistic than those of NICAM_Br.

It is also of some interest to compare different models sharing the same (or similar) cloud-to-precipitation
parameterizations. MIROC5.2, which uses the same autoconversion scheme as NICAM_Br, produces rain effi-
ciently even when 5< Reff ≤ 10 μm (Figure 5g), a characteristic similar to that of NICAM_Br. On the other hand,
ECHAM-HAMMOZ, based on the same autoconversion scheme as NICAM_KK, also shows behaviors similar to
NICAM_KK: the rightward shift of radar reflectivity profiles with increasing Reff is significant, and clouds with
5< Reff ≤ 10 μm are less likely to produce a radar reflectivity over 0 dBZ. It is nevertheless worth noting that
differences between MIROC5.2 and NICAM_Br, as well as between ECHAM-HAMMOZ and NICAM_KK, are also
nonnegligible, implying the significance of discrepancies in representations of processes other than micro-
physics, such as dynamic and thermodynamic processes.

The biases identified in vertical microphysical structure of GCMs corroborate the too fast productions of
precipitation on one hand, and hint at how cloud microphysical properties, such as LWP and Reff, are inade-
quately associated with the precipitation occurrence on the other hand. The latter aspect is further explored
in the following section.

4. Exploration of Microphysical Biases

The analyses above indicate that the onsets of precipitation in all the models are substantially too easily: the
model precipitation occurs when LWP and Reff are smaller than those for observed precipitation. In this sec-
tion, we explore this too-easy formation of precipitation in more depth from two aspects: (1) biases in base
cloud microphysical properties (e.g., LWP and Reff) in GCMs and (2) biases in the cloud-to-precipitation
transition process.

4.1. Cloud Microphysical Properties

To investigate the first aspect of biases, Figure 6 shows the PDFs of cloud occurrence as a function of LWP and
Reff. It is shown that clouds in satellite observations (Figures 6a and 6b) exert LWP centered around 100 gm�2

and Reff centered around 15 μm. However, model simulations (Figures 6c–6i) show PDFs quite different from
Figures 6a and 6b. Clouds in most models tend to have substantially smaller LWP (GFDL_CLUBB, MRI-CGCM3,
MIROC, NICAM_Br, and NICAM_KK) and Reff (GFDL_CLUBB, GFDL_AM4, ECHAM-HAMMOZ, NICAM_Br, and
NICAM_KK) than observations. This can also be found from the spatially averaged results, as shown in
Table 2. Moreover, unlike the single-peaked Reff in A-Train, GFDL_CLUBB and GFDL_AM4 show two separated
peaks, one at Reff < 5 μm and the other at a larger Reff of around 10 μm.

Generally speaking, LWP and Reff are mostly underestimated by GCMs. These underestimated cloud proper-
ties compensate, at least in part, for the error that precipitation forms at smaller LWP and Reff values (as
shown in Figures 4 and 5). The extent of the error compensation differs among themodels analyzed, resulting
in different occurrence proportions of cloud, drizzle, and rain, as shown in Figure 2. Nevertheless, in all the

Table 2
The Cloud Top Effective Radius (Reff) and Liquid Water Path (LWP) Averaged Between 60°S and 60°N for A-Train Observations and Model Simulations

A-Train A-Train(14 km) GFDL_CLUBB GFDL_ AM4 ECHAM-HAMMOZ MRI-CGCM3 MIROC5.2 NICAM_Br NICAM_KK

Reff 19.80 18.39 6.38 7.23 11.15 14.36 13.71 5.34 6.96
LWP 158.33 120.77 87.05 147.03 136.24 93.35 70.00 66.56 102.49
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Figure 7. Occurrence frequency of precipitation (drizzle or rain) at each LWP and Reff bin for (a) A-Train, (b) A-Train aver-
aged every 14 km along track, (c) GFDL_CLUBB, (d) GFDL_AM4, (e) ECHAM-HAMMOZ, (f) MRI-CGCM3, (g) MIROC5.2,
(h) NICAM_Br, and (i) NICAM_KK.
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models examined, the too-efficient precipitation biases are not completely canceled by the cloud property
biases, resulting in model precipitation that is still biased toward higher occurrence of precipitation.

It should be noted that the onset of precipitation (i.e., autoconversion) in GCMs is generally parameterized
independently at each model layer, thus only liquid water content and cloud droplet size at a particular ver-
tical layer work in the triggering of precipitation. However, as precipitation fluxes at a particular model layer
typically rely on those at layers above, precipitation water also interacts with cloud water in its pathway
through the accretion process. So the simulated LWP and Reff shown above are an outcome of the layer-
independent precipitation parameterization, and thus can be used as proxies for single-layer properties to
indicate biases in models’ precipitation process.

4.2. Precipitation Process

In addition to the base errors in liquid water path and cloud particle size, the dependence of precipitation
formation on these cloud properties is another source of error that should be examined. Such a diagnosis
is shown in Figure 7, which presents precipitation (drizzle or rain) occurrence frequency as a function of
LWP and Reff.

In the A-Train results (Figures 7a and 7b), the probability of precipitation monotonically increases with
increasing LWP and Reff, with its maximum at the right-upper corner of the diagram. Themajority of the mod-
els, except for NICAM_Br, exhibit such a trend in a qualitative sense. Therefore, the precipitation formation
processes in these models possess realistic behavior at least qualitatively.

However, GFDL models (particularly GFDL_CLUBB) (Figures 7c and 7d) also exert an increasing trend in the
right-lower direction found at the lower part of the diagrams, implying that precipitating clouds can
have smaller Reff than that of nonprecipitating clouds. This is an unrealistic relationship not identified in
satellite observations.

MRI-CGCM3 (Figure 7f) and MIROC (Figure 7g) show substantially more frequent precipitation than most
other models. Even with consideration of the given base errors of LWP and Reff shown in Figures 6f and
6g, the onset of precipitation in MRI-CGCM3 and MIROC occurs still too easily. This suggests that the
too-frequent precipitation biases exposed in these two models are attributed to the precipitation formation
parameterization that relates the precipitation occurrence with cloud properties.

More realistic statistics are shown in Figure 7i for NICAM_KK particularly when compared with Figure 7h for
NICAM_Br. The incorporation of the KK00 autoconversion scheme in NICAM makes the triggering of precipi-
tation much more realistic than that using the BR68 scheme. However, NICAM_KK still triggers precipitation
too easily (at too small Reff and LWP); thus, the precipitation frequency in NICAM_KK is still highly overesti-
mated as shown in Figures 1i and 2.

To further investigate the relationship between the precipitation process and each cloud property (Reff
or LWP), Figures 8 and 10 show the box-and-whisker plots of Reff and LWP, respectively, for different
precipitation categories.

It is shown in Figures 8a and 8b that Reff increases steadily from the cloud category to the rain category in
satellite observations. This means that the development of precipitation is accompanied with the enlarge-
ment of cloud particle sizes. Some models, such as ECHAM-HAMMOZ (Figure 8e), MRI-CGCM3 (Figure 8f),
and MIROC5.2 (Figure 8g), capture this trend although the exact Reff ranges in the simulations are not neces-
sarily comparable to those of observations. Among these models, MRI-CGCM3 is quantitatively closer to
observations than other models.

However, the two versions of GFDL models (Figures 8c and 8d) and NICAM_KK (Figure 8i) fail to represent the
increase of Reff with the enhancement of precipitation. In GFDL_AM4 and NICAM_KK, an increase of Reff from
the cloud category to the drizzle category is found, but the Reff of the rain category is comparable to, if not
slightly smaller than, that of the drizzle category. NICAM_Br behaves slightly better than NICAM_KK in terms
of the continuously increasing Reff from cloud to rain. Remarkably, GFDL_CLUBB shows amonotonic decrease
of Reff from cloud to rain categories, in contrast to the tendency in satellite observations.

The decreasing trend of Reff might be associated with the too-efficient rain formation that depletes the cloud
liquid water so efficiently. In two-moment cloud microphysics parameterizations, cloud particle size at each
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grid cell (Rc) depends on both liquid water content (Lc) and cloud
droplet number concentration (Nc, typically parameterized from

aerosol activation) as Rc∝L1=3c N�1=3
c . As Rc depends on Lc and Nc, the

variations of Reff (a proxy for Rc) with precipitation enhancement
somewhat reflect the precipitation-induced depletion of Lc and
scavenging of aerosols that influences Nc. These changes of Lc and Nc

induce competing effects on Rc: the precipitation-induced depletion of
Lc and Nc operates to decrease and increase Rc, respectively. Given this
dependency of Rc on Lc and Nc, the net decreasing tendency of Reff
with enhanced precipitation found in GFDL_CLUBB suggests that the
Lc effect dominates over the Nc effect. The lack of increase in Reff with
precipitation in the GFDL and NICAM models (as shown in Figures 8c,
8d, 8h, and 8i) therefore implies that the cloud-to-precipitation
transitions are so efficient (the autoconversion or accretion rate may
be unrealistically large) that there remains less cloud water (Lc),
leading to a reduction of the particle size. This is supported by

Figure 8. The box-and-whisker plots of Reff for the cloud, drizzle, and rain modes for (a) A-Train, (b) A-Train averaged every
14 km along track, (c) GFDL_CLUBB, (d) GFDL_AM4, (e) ECHAM-HAMMOZ, (f) MRI-CGCM3, (g) MIROC5.2, (h) NICAM_Br,
and (i) NICAM_KK.

Figure 9. Averaged (60°S–60°N) cloud number concentration (Nc, white
bars) and liquid water content (Lc, black bars) at cloud top simulated by
models. The error bars represent the standard deviation.
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Figure 9, which shows Lc at cloud top is 2–7 times smaller for GFLD and NICAMmodels than for other models,
while Nc at cloud top differs in much less extent.

Similar to Figures 8a and 8b, the A-Train statistics of LWP in Figures 10a and 10b also show a robust left-to-
right increase, indicating that the enhancement of precipitation statistically coincides with more abundant
cloud water. Most models reproduce this increasing trend of LWP, but with smaller values. It is interesting
in this regard that the increase of LWP from the cloud category to the drizzle category is less significant in
GFDL_CLUBB (Figure 10c). If we hypothesize that autoconversion is primarily responsible for the water transi-
tion from cloud to drizzle, and that accretion is primarily responsible for the water transition from drizzle to
rain, then the inefficient growth of LWP from cloud to drizzle may imply that the autoconversion depletion of
cloud water is too efficient in GFDL_CLUBB. However, it may also be a consequence of dynamical biases: the
dynamically controlled vapor condensation may be insufficient for the LWP growth in the drizzle category of
GFDL_CLUBB. This argument could be clarified by more detailed analysis in future studies.

The results of GFDL_AM4 (Figure 10d) and ECHAM-HAMMOZ (Figure 10e) resemble those of A-Train
(Figure 10a) in both magnitude and trend, suggesting that their water transition processes are better repre-
sented than other models. This is consistent with what is shown in Figure 4. The behavior of LWP variations in
MRI-CGCM3 (Figure 10f) and MIROC5.2 (Figure 10g) are at least qualitatively similar to the A-Train result,
implying that the autoconversion and accretion efficiencies may be reasonably represented (on the basis
of the hypothesis stated above).

Figure 10. The same as Figure 8, but for LWP.
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In NICAM, the LWP transition with enhancement of precipitation
(Figures 10h–10i) is not as robust as shown in observations
(Figure 10b). However, notable improvement by applying the KK00
autoconversion scheme (Figure 10i) is seen, illustrated by both the
increased magnitude of LWP and also more robust increasing of LWP
with the enhancement of precipitation compared with Figure 10h.

Figure 11 summarizes the behaviors of cloud water and particle size as a
function of different precipitation occurrence shown in Figures 8 and 10
in the form of the median values of LWP and Reff for each precipitation
category in the LWP–Reff coordinates. By connecting the marks for a sin-
gle model or the observations, the transitions of cloud microphysical
properties with changing precipitation are hinted. Figure 11, containing
information on both cloud water transition and cloud occurrence statis-
tics, is also a joint consequence of Figures 6 and 7.

In Figure 11, satellite observations show a right-upper trend from the
cloud category to the rain category. Three models (ECHAM-HAMMOZ,
MRI-CGCM3, and MIROC5.2) reproduce this trend although with the
locations inconsistent with observations, highlighting the biases in
simulated LWP and Reff. For GFDL models, enhanced precipitation is
associated with increasing LWP but decreasing Reff, which is particularly

the case in GFDL_CLUBB. For NICAM models, the increase of LWP with enhanced precipitation is found
(although not as robust as shown in observations), but Reff also hardly increases with precipitation enhance-
ment. The differences in subgrid parameterizations (in the two versions of GFDL models) and autoconversion
schemes (as identified from the comparisons between the two versions of NICAM models) pose substantial
effects, but fundamental biases seem to exist that are responsible for the lack of increasing Reff in GFDL
and NICAM models.

The results described above provide a picture of model biases in representation of precipitation: although
precipitation occurs too frequently in most GCMs, the precipitation process itself may still be reasonably
simulated by some models (as inferred from cloud microphysical property transitions). Thus, two aspects
of errors in precipitation parameterizations of GCMs should be considered separately. One is the “triggering”
problem: in what condition should cloud water be transferred to precipitation water; the other is the
“evolution” problem: how precipitation interacts with cloud water. The former appears to be critical for the
“too-frequent” problems of simulated precipitation, while the latter can be critical for the cloud microphysical
property biases associated with precipitation occurrence. Nevertheless, this does not dismiss the importance
of the base biases in the parameterizations of cloud microphysical properties. Moreover, the coupling
between cloudmacrophysics and cloudmicrophysics can be another important source of warm precipitation
biases, which is not examined here.

5. Conclusions

In this study, we evaluated the cloud-to-precipitation transition process simulated by up-to-date versions of
multiple state-of-the-art GCMs, including both traditional climatemodels and a global high-resolution model,
against A-Train satellite observations. We found that both traditional and high-resolution GCMs share some
similarities in characteristics of simulated precipitation: all the analyzedmodels continue to have the problem
of too-frequent formation of precipitation, similar to the previous versions of models. Precipitation was trig-
gered even when cloud particle size and liquid water path were still too small, and thus, the occurrences of
precipitation were significantly overestimated. The bulk precipitation schemes used in models play a crucial
role in determining these simulated precipitation behaviors, regardless of the horizontal resolution of mod-
els. We also found that models contained “compensating errors” between cloud properties (LWP and Reff)
and the precipitation formation process: the too-efficient precipitation formations were partly compensated
for by the systematic underestimates of LWP and Reff. However, this compensation did not completely cancel
the precipitation formation biases. Even with consideration of these systematic cloud property errors, preci-
pitation was still generated too easily in the GCMs than inferred from the observations. This implied that there

Figure 11. Transition of precipitation mode in the LWP-Reff coordinates. The
position of each mark represents the median values of Reff and LWP as
shown in Figures 8 and 10, respectively.
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were fundamental biases in representation of the precipitation onset in GCMs (e.g., autoconversion schemes
and coupling between microphysics and macrophysics).

In addition to the problem in precipitation occurrence frequency, the evolution of cloud microphysical
properties with the enhancement of precipitation was also found to suffer from robust errors. For instance,
the GFDL models and NICAM models fail to represent an increase in cloud particle size, with enhanced
occurrence of precipitation. Despite these model biases, useful insight into possible improvements of
warm precipitation parameterization in GCMs was obtained from the analysis of this study. On one hand,
the sensitivity test with NICAM revealed that the adoption of a more realistic autoconversion scheme sig-
nificantly improved the triggering of precipitation. On the other hand, the use of the sophisticated subgrid
scheme CLUBB, in addition to a more realistic autoconversion scheme, in the GFDL model brought notable
improvement in the representation of subtropical eastern oceanic precipitation. These results underscore
the importance of autoconversion and subgrid schemes for the improvement of warm precipitation repre-
sentation. But deterioration of other precipitation characteristics accompanying these improvements
implies that warm precipitation biases stem from multisources. Other aspects of models, both microphy-
sics and macrophysics and also the coupling between them, are highly important for realistic representa-
tion of precipitation process. Therefore, the effect of implementing a particular autoconversion or subgrid
scheme may be model-dependent.

References
Baker, M. B., & Peter, T. (2008). Small-scale cloud processes and climate. Nature, 451(7176), 299–300. https://doi.org/10.1038/

nature06594
Berg, W., L’Ecuyer, T., & Haynes, J. M. (2010). The distribution of rainfall over oceans from spaceborne radars. Journal of Applied Meteorology

and Climatology, 49(3), 535–543. https://doi.org/10.1175/2009JAMC2330.1
Berry, E. X. (1968). Modification of the warm rain process, paper presented at 1st National Conference on Weather Modification (pp. 81–85).

Albany, NY. American Meteorological Society, April 28–May 1.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J. L., Klein, S. A., … John, V. O. (2011). COSP: Satellite simulation software for

model assessment. Bulletin of the American Meteorological Society, 92(8), 1023–1043. https://doi.org/10.1175/2011BAMS2856.1
Di Michele, S., Ahlgrimm, M., Forbes, R., Kulie, M., Bennartz, R., Janisková, M., & Bauer, P. (2012). Interpreting an evaluation of the ECMWF

global model with CloudSat observations: Ambiguities due to radar reflectivity forward operator uncertainties. Quarterly Journal of the
Royal Meteorological Society, 138(669), 2047–2065. https://doi.org/10.1002/qj.1936

Geoffroy, O., Brenguier, J.-L., & Sandu, I. (2008). Relationship between drizzle rate, liquid water path and droplet concentration at the scale of
a stratocumulus cloud system. Atmospheric Chemistry and Physics, 8(16), 4641–4654. https://doi.org/10.5194/acp-8-4641-2008

Golaz, J.-C., Horowitz, L. W., & Levy, H. II (2013). Cloud tuning in a coupled climate model: Impact on 20th century warming.
Geophysical Research Letters, 40(10), 2246–2251. https://doi.org/10.1002/grl.50232

Golaz, J.-C., Salzmann, M., Donner, L., Horowitz, L., Ming, Y., & Zhao, M. (2011). Sensitivity of the aerosol indirect effect to subgrid variability in
the cloud parameterization of the GFDL atmosphere general circulation model AM3. Journal of Climate, 24(13), 3145–3160. https://doi.
org/10.1175/2010JCLI3945.1

Guo, H., Golaz, J.-C., Donner, L. J., Ginoux, P., & Hemler, R. S. (2014). Multivariate probability density functions with dynamics in the GFDL
atmospheric general circulation model: Global tests. Journal of Climate, 27(5), 2087–2108. https://doi.org/10.1175/JCLI-D-13-00347.1

Guo, H., Golaz, J.-C., Donner, L. J., Larson, V. E., Schanen, D. P., & Griffin, B. M. (2010). Multi-variate probability density functions with dynamics
for cloud droplet activation in large-scale models: Single column tests. Geoscientific Model Development, 3(2), 475–486. https://doi.org/
10.5194/gmd-3-475-2010

Guo, H., Golaz, J.-C., Donner, L. J., Wyman, B., Zhao, M., & Ginoux, P. (2015). CLUBB as a unified cloud parameterization: Opportunities and
challenges. Geophysical Research Letters, 42(11), 4540–4547. https://doi.org/10.1002/2015GL063672

Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., & Okamoto, H. (2013). Evaluating cloud microphysics from
NICAM against CloudSat and CALIPSO. Journal of Geophysical Research: Atmospheres, 118(13), 7273–7292. https://doi.org/10.1002/
jgrd.505%2064

Haynes, J. M., L’Ecuyer, T., Stephens, G. L., Miller, S. D., Mitrescu, C., Wood, N. B., & Tanelli, S. (2009). Rainfall retrievals over the ocean with
spaceborne high-frequency cloud radar. Journal of Geophysical Research, 114, D00A22. https://doi.org/10.1029/2008JD009973

Held, I., & Soden, B. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686–5699. https://doi.
org/10.1175/JCLI3990.1

Hulme, M., Osborn, T. J., & Johns, T. C. (1998). Precipitation sensitivity to global warming: Comparison of observations with HadCM2
simulations. Geophysical Research Letters, 25(17), 3379–3382. https://doi.org/10.1029/98GL02562

Intergovernmental Panel on Climate Change (2013). Climate change 2013 (p. 1535). The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK, and New York: Cambridge
University Press.

Kawamoto, K., & Suzuki, K. (2012). Microphysical transition in water clouds over the Amazon and China derived from space-borne radar and
radiometer data. Journal of Geophysical Research, 117, D05212. https://doi.org/10.1029/2011JD016412

Kessler, E. (1969). On the distribution and continuity of water substance in atmospheric circulations,Meteorological Monographs (Vol. 32, p. 84).
Boston, MA: American Meteorological Society. https://doi.org/10.1007/978-1-935704-36-2

Khairoutdinov, M., & Kogan, Y. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus.
Monthly Weather Review, 128(1), 229–243. https://doi.org/10.1175/1520-0493(2000)128%3C0229:ANCPPI%3E2.0.CO;2

L’Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M., & Takemura, T. (2009). Global observations of aerosol impacts on precipitation occurrence in
warm maritime clouds. Journal of Geophysical Research: Atmospheres, 114, D09211. https://doi.org/10.1029/2008JD011273

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027310

JING ET AL. MULTIMODEL STUDY ON WARM PRECIPITATION 11,822

Acknowledgments
This study was supported by
NOAA’s Climate Program Office’s
Modeling, Analysis, Predictions and
Projections program with the grant
NA15OAR4310153 and JAXA GCOM-C
project. K.S. and T.O. are supported by
the Integrated Research Program for
Advancing Climate Models (TOUGOU
program) from the Ministry of
Education, Culture, Sports, Science and
Technology (MEXT), Japan. The
CloudSat data were obtained from the
CloudSat Data Processing Center (DPC)
at Colorado State University (http://
www.cloudsat.cira.colostate.edu). The
MODIS data were obtained from the
Level-1 and Atmosphere Archive and
Distribution System (LAADS) Distributed
Active Archive Center (DAAC) of NASA
(https://ladsweb.modaps.eosdis.nasa.
gov). The model data are available from
https://doi.org/10.5281/zenodo.890474.
The ECHAM-HAMMOZ model is devel-
oped by a consortium composed of ETH
Zurich, Max Planck Institut für
Meteorologie, Forschungszentrum
Jülich, University of Oxford, the Finnish
Meteorological Institute, and the
Leibniz Institute for Tropospheric
Research and managed by the Center
for Climate Systems Modeling (C2SM) at
ETH Zurich. We thank Christine Nam
and Jan Kretzschmar for help with COSP
in ECHAM-HAMMOZ. The NICAM simu-
lations were performed using the K
computer at RIKEN in Japan (general use
proposal numbers: 150156, 150288,
160004, 160231, and 170017). We
would like to thank Jean-Christophe
Golaz and Ming Zhao for their leader-
ship in developing AM4 and the GFDL
model development team for the per-
mission of publishing AM4 results.

https://doi.org/10.1038/nature06594
https://doi.org/10.1038/nature06594
https://doi.org/10.1175/2009JAMC2330.1
https://doi.org/10.1175/2011BAMS2856.1
https://doi.org/10.1002/qj.1936
https://doi.org/10.5194/acp-8-4641-2008
https://doi.org/10.1002/grl.50232
https://doi.org/10.1175/2010JCLI3945.1
https://doi.org/10.1175/2010JCLI3945.1
https://doi.org/10.1175/JCLI-D-13-00347.1
https://doi.org/10.5194/gmd-3-475-2010
https://doi.org/10.5194/gmd-3-475-2010
https://doi.org/10.1002/2015GL063672
https://doi.org/10.1002/jgrd.505%2064
https://doi.org/10.1002/jgrd.505%2064
https://doi.org/10.1029/2008JD009973
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1029/98GL02562
https://doi.org/10.1029/2011JD016412
https://doi.org/10.1007/978-1-935704-36-2
https://doi.org/10.1175/1520-0493(2000)128%3C0229:ANCPPI%3E2.0.CO;2
https://doi.org/10.1029/2008JD011273
http://www.cloudsat.cira.colostate.edu
http://www.cloudsat.cira.colostate.edu
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://doi.org/10.5281/zenodo.890474


Lebo, Z. J., & Feingold, G. (2014). On the relationship between responses in cloud water and precipitation to changes in aerosol.
Atmospheric Chemistry and Physics, 14(21), 11817–11831. https://doi.org/10.5194/acp-14-%2011817-2014

Lebsock, M., Morrison, H., & Gettelman, A. (2013). Microphysical implications of cloud-precipitation covariance derived from satellite remote
sensing. Journal of Geophysical Research, 118, 6521–6533. https://doi.org/10.1002/jgrd.50347

Lebsock, M., Stephens, G. L., & Kummerow, C. (2008). Multisensor satellite observations of aerosol effects on warm clouds. Journal of
Geophysical Research, 113, D15205. https://doi.org/10.1029/2008JD009876

L’Ecuyer, T. S., & Jiang, J. (2010). Touring the atmosphere aboard the A-Train. Physics Today, 63(7), 36–41. https://doi.org/10.1063/1.3463626
Liu, Y., Daum, P. H., McGraw, R. L., Miller, M. A., & Niu, S. (2007). Theoretical expression for the autoconversion rate of the cloud droplet

number concentration. Geophysical Research Letters, 34, L16821. https://doi.org/10.1029/2007GL030389
Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., & Zhang, J. (2007). Cloud microphysics and aerosol indirect effects in

the global climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 7, 3425–3446. https://doi.org/10.5194/acp-7-3425-2007
Mann, J. A. L., Chiu, J. C., Hogan, R. J., O’Connor, E. J., L’Ecuyer, T. S., Stein, T. H. M., & Jefferson, A. (2014). Aerosol impacts on drizzle properties

in warm clouds from ARMMobile Facility maritime and continental deployments. Journal of Geophysical Research, 119, 4136–4148. https://
doi.org/10.1002/2013JD021339

Marchand, R., Mace, G. G., Ackerman, T., & Stephens, G. (2008). Hydrometeor detection using Cloudsat—An Earth -orbiting 94-GHz cloud
radar. Journal of Atmospheric and Oceanic Technology, 25(4), 519–533. https://doi.org/10.1175/2007JTECHA1006.1

Michibata, T., Suzuki, K., Sato, Y., & Takemura, T. (2016). The source of discrepancies in aerosol–cloud–precipitation interactions between
GCM and A-Train retrievals. Atmospheric Chemistry and Physics, 16(23), 15413–15424. https://doi.org/10.5194/acp-16-15413-2016

Michibata, T., & Takemura, T. (2015). Evaluation of autoconversion schemes in a single model framework with satellite observations.
Journal of Geophysical Research: Atmospheres, 120, 9570–9590. https://doi.org/10.1002/2015JD023818

Morrison, H., & Gettelman, A. (2008). A new two-moment bulk Stratiform cloud microphysics scheme in the community atmosphere
model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21(15), 3642–3659. https://doi.org/10.1175/
2008JCLI2105.1

Nakajima, T. Y., Suzuki, K., & Stephens, G. L. (2010). Droplet growth in warm water clouds observed by the A-Train. Part II: A multisensor view.
Journal of the Atmospheric Sciences, 67(6), 1897–1907. https://doi.org/10.1175/2010JAS3276.1

Penner, J. E., Quaas, J., Storelvmo, T., Takemura, T., Boucher, O., Guo, H., … Seland, Ø. (2006). Model intercomparison of indirect aerosol
effects. Atmospheric Chemistry and Physics, 6(11), 3391–3405. https://doi.org/10.5194/acp-6-3391-2006

Pincus, R., & Baker, M. B. (1994). Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372(6503),
250–252. https://doi.org/10.1038/372250a0

Platnick, S., Ackerman, S. A., King, M. D., Meyer, K., Menzel, W. P., Holz, R. E.,… Yang, P. (2015). MODIS atmosphere L2 cloud product (06_L2),
NASA MODIS Adaptive Processing System, Goddard Space Flight Center. https://doi.org/10.5067/MODIS/MOD06_L2.006

Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E.,… Schulz, M. (2009). Aerosol indirect effects—General circulation model
intercomparison and evaluation with satellite data. Atmospheric Chemistry and Physics, 9(22), 8697–8717. https://doi.org/10.5194/
acp-9-8697-2009

Roh, W., & Satoh, M. (2014). Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for
deep convective systems over the tropical Central Pacific. Journal of the Atmospheric Sciences, 71(7), 2654–2673. https://doi.org/10.1175/
JAS-D-13-0252.1

Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., & Iga, S. (2008). Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global
cloud resolving simulations. Journal of Computational Physics, 227(7), 3486–3514. https://doi.org/10.1016/j.jcp.2007.02.006

Satoh, M., Roh, W., & Hashino, T. (2016). Evaluations of clouds and precipitations in NICAM using the Joint Simulator for Satellite Sensors, CGER’s
Supercomputer Monograph Report (Vol. 22, p. 110). Tsukuba, Japan: Center for Global Environment Research.

Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., … Kubokawa, H. (2014). The Non-hydrostatic Icosahedral Atmospheric
Model: Description and development. Progress in Earth and Planetary Science, 1(1), 18. https://doi.org/10.1186/s40645-014-0018-1

Sorooshian, A., Feingold, G., Lebsock, M. D., Jiang, H., & Stephens, G. L. (2009). On the precipitation susceptibility of clouds to aerosol
perturbations. Geophysical Research Letters, 36, L13803. https://doi.org/10.1029/2009GL038993

Sorooshian, A., Wang, Z., Feingold, G., & L’Ecuyer, T. S. (2013). A satellite perspective on cloud water to rain water conversion rates
and relationships with environmental conditions. Journal of Geophysical Research, 118, 6643–6650. https://doi.org/10.1002/
jgrd.50523

Stephens, G. (2005). Cloud feedbacks in the climate system: A critical review. Journal of Climate, 18(2), 237–273. https://doi.org/10.1175/
JCLI-3243.1

Stephens, G. L., L’Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J. C., Bodas-Salcedo, A.,…Haynes, J. (2010). Dreary state of precipitation in global
models. Journal of Geophysical Research, 115, D24211. https://doi.org/10.1029/2010JD014532

Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,…Marchand, R. (2008). CloudSat mission: Performance and early science
after the first year of operation. Journal of Geophysical Research, 113, D00A18. https://doi.org/10.1029/2008JD009982

Suzuki, K., Golaz, J. C., & Stephens, G. L. (2013). Evaluating cloud tuning in a climate model with satellite observations. Geophysical Research
Letters, 40(16), 4464–4468. https://doi.org/10.1002/grl.50874

Suzuki, K., Nakajima, T. Y., & Stephens, G. L. (2010). Particle growth and drop collection efficiency of warm clouds as inferred from
joint CloudSat and MODIS observations. Journal of the Atmospheric Sciences, 67(9), 3019–3032. https://doi.org/10.1175/
2010JAS3463.1

Suzuki, K., Stephens, G. L., Bodas-Salcedo, A., Wang, M., Golaz, J.-C., Yokohata, T., & Tsuyoshi, K. (2015). Evaluation of the warm rain formation
process in global models with satellite observations. Journal of the Atmospheric Sciences, 72(10), 3996–4014. https://doi.org/10.1175/
JAS-D-14-0265.1

Takahashi, H., Lebsock, M., Suzuki, K., Stephens, G., & Wang, M. (2017). An investigation of microphysics and subgrid-scale variability in
warm-rain clouds using the A-Train observations and a multiscale modeling framework. Journal of Geophysical Research: Atmospheres,
122(14), 7493–7504. https://doi.org/10.1002/2016JD026404

Tripoli, G. J., & Cotton, W. R. (1980). A numerical investigation of several factors contributing to the observed variable intensity of deep
convection over south Florida. Journal of Applied Meteorology, 19(9), 1037–1063. https://doi.org/10.1175/1520-0450(1980)019%3C1037:
ANIOSF%3E2.0.CO;2

Wang, M., Ghan, S., Liu, X., L’Ecuyer, T., Zhang, K., Morrison, H., … Penner, J. (2012). Constraining cloud lifetime effects of aerosols using
A-Train satellite observations. Geophysical Research Letters, 39, L15709. https://doi.org/10.1029/2012GL052204

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S.,… Kimoto, M. (2010). Improved climate simulation by MIROC5: Mean
states, variability, and climate sensitivity. Journal of Climate, 23(23), 6312–6335. https://doi.org/10.1175/2010JCLI3679.1

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027310

JING ET AL. MULTIMODEL STUDY ON WARM PRECIPITATION 11,823

https://doi.org/10.5194/acp-14-%2011817-2014
https://doi.org/10.1002/jgrd.50347
https://doi.org/10.1029/2008JD009876
https://doi.org/10.1063/1.3463626
https://doi.org/10.1029/2007GL030389
https://doi.org/10.5194/acp-7-3425-2007
https://doi.org/10.1002/2013JD021339
https://doi.org/10.1002/2013JD021339
https://doi.org/10.1175/2007JTECHA1006.1
https://doi.org/10.5194/acp-16-15413-2016
https://doi.org/10.1002/2015JD023818
https://doi.org/10.1175/2008JCLI2105.1
https://doi.org/10.1175/2008JCLI2105.1
https://doi.org/10.1175/2010JAS3276.1
https://doi.org/10.5194/acp-6-3391-2006
https://doi.org/10.1038/372250a0
https://doi.org/10.5067/MODIS/MOD06_L2.006
https://doi.org/10.5194/acp-9-8697-2009
https://doi.org/10.5194/acp-9-8697-2009
https://doi.org/10.1175/JAS-D-13-0252.1
https://doi.org/10.1175/JAS-D-13-0252.1
https://doi.org/10.1016/j.jcp.2007.02.006
https://doi.org/10.1186/s40645-014-0018-1
https://doi.org/10.1029/2009GL038993
https://doi.org/10.1002/jgrd.50523
https://doi.org/10.1002/jgrd.50523
https://doi.org/10.1175/JCLI-3243.1
https://doi.org/10.1175/JCLI-3243.1
https://doi.org/10.1029/2010JD014532
https://doi.org/10.1029/2008JD009982
https://doi.org/10.1002/grl.50874
https://doi.org/10.1175/2010JAS3463.1
https://doi.org/10.1175/2010JAS3463.1
https://doi.org/10.1175/JAS-D-14-0265.1
https://doi.org/10.1175/JAS-D-14-0265.1
https://doi.org/10.1002/2016JD026404
https://doi.org/10.1175/1520-0450(1980)019%3C1037:ANIOSF%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1980)019%3C1037:ANIOSF%3E2.0.CO;2
https://doi.org/10.1029/2012GL052204
https://doi.org/10.1175/2010JCLI3679.1


Webb, M., Senior, C., Bony, S., & Morcrette, J. J. (2001). Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and
LMD atmospheric climate models. Climate Dynamics, 17, 905–922. https://doi.org/10.1007/s003820100157

Yukimoto, S., Adachi, Y., Hosaka, M., & Sakami, T. (2012). A new global climate model of the meteorological research institute:
MRI-CGCM3—Model description and basic performance. Journal of the Meteorological Society of Japan, 90A(0), 23–64. https://doi.org/
10.2151/jmsj.2012-A02

Yukimoto, S., Yoshimura, H., Hosaka, M., Sakami, T., Tsujino, H., Hirabara, M., … Kitoh, A. (2011). Meteorological Research Institute Earth
System Model Version 1 (MRI-ESM1)—Model Description—. Tech. Rep. of MRI. (Vol. 64, p. 83). Tsukuba, Japan: Meteorological Research
Institute. https://doi.org/10.11483/mritechrepo

Zhang, K., O’Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., … Feichter, J. (2012). The global aerosol-climate model ECHAM-HAM,
version 2: Sensitivity to improvements in process representations. Atmospheric Chemistry and Physics, 12(19), 8911–8949. https://doi.org/
10.5194/acp-12-8911-2012

Zhang, Y., Klein, S. A., Boyle, J., & Mace, G. G. (2010). Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model
version 3 using CloudSat and CALIPSO data. Journal of Geophysical Research, 115, D12205. https://doi.org/10.1029/2009JD012006

Zhao, M., Golaz, J., Held, I., Ramaswamy, V., Lin, S., Ming, Y., … Guo, H. (2016). Uncertainty in model climate sensitivity traced to
representations of cumulus precipitation microphysics. Journal of Climate, 29(2), 543–560. https://doi.org/10.1175/JCLI-D-15-0191.1

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027310

JING ET AL. MULTIMODEL STUDY ON WARM PRECIPITATION 11,824

https://doi.org/10.1007/s003820100157
https://doi.org/10.2151/jmsj.2012-A02
https://doi.org/10.2151/jmsj.2012-A02
https://doi.org/10.11483/mritechrepo
https://doi.org/10.5194/acp-12-8911-2012
https://doi.org/10.5194/acp-12-8911-2012
https://doi.org/10.1029/2009JD012006
https://doi.org/10.1175/JCLI-D-15-0191.1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


